Tutti gli articoli di luigilombardo

Visita virtuale allo CNAO di Pavia

Lo CNAO di Pavia è una eccellenza internazionale nell’uso degli adroni in campo oncologico. E’ anche uno dei pochi posti, vicino alla nostra scuola, dove è possibile vedere un acceleratore di particelle. Per questo tutti gli anni organizziamo la visita allo CNAO per le quinte del liceo scientifico, che hanno la fisica delle particelle nel programma di studio. Quest’anno avevamo prenotato la visita allo CNAO di Pavia con largo anticipo, perché è visitato da molte scolaresche e trovare posto non è facile. Avevo prenotato già da metà dicembre per il 24 aprile. Poi è arrivato il virus, e si è bloccato tutto. Ho aspettato fino al 16 marzo, quando si è capito che la scuola non avrebbe riaperto, almeno fino a maggio, per cui ho cancellato la visita. Il 26 marzo lo CNAO mi propone una visita virtuale, sempre per il 24 aprile. Dopo un giro di comunicazioni con i colleghi accompagnatori delle altre classi e con i colleghi della mia quinta, accetto la proposta. Giustamente lo CNAO propone di usare la stessa piattaforma da noi usata per la didattica a distanza, così che sia più semplice per gli studenti partecipare. Nella nostra scuola si usano diverse piattaforme, ma Google Meet è la più usata, ed è anche quella che uso io, così la propongo. Per lo CNAO era invece una piattaforma nuova, per cui mi chiedevano chiarimenti sulla compatibilità con il materiale che volevano utilizzare. Io usavo questa piattaforma da circa un mese, cosicché anche io non la conoscevo bene. Propongo allora una prova, il metodo più sicuro per verificare il funzionamento di un sistema, al di là di quello che si può leggere su un manuale. Svolgiamo la prova il 15 aprile, insieme alle relatrici dello CNAO, la dottoressa Necchi, fisica, e la dottoressa Facoetti, radiobiologa, anche con l’aiuto della collega Locatelli, e verifichiamo che funziona tutto. Ovviamente la prova è stata fatta con 4 partecipanti, mentre la visita prevedeva 65 studenti ed altri 10 partecipanti tra docenti e personale dello CNAO, e non avevo la sicurezza che la piattaforma ed il collegamento avrebbero retto. Arriva il giorno della visita, e per avere più possibilità di successo, invito tutti, oltre a spegnere i microfoni, affinché non si producano rumori che possano disturbare la presentazione, anche a spegnere le telecamere, per non caricare troppo il collegamento, che, in questi giorni di lockdown, è spesso sovraccarico con la conseguenza di rischiare disconnessioni. Il tutto riesce perfettamente, il materiale viene presentato senza problemi e gli studenti pongono le loro domande tramite la chat. Colgo l’occasione per ringraziare lo CNAO dell’opportunità dataci di svolgere questa visita, anche se solo virtualmente, e le relatrici, per la chiarezza dell’esposizione. Dell’incontro è stata fatta anche una registrazione video, ma per pubblicarla attendiamo l’autorizzazione dello CNAO. In compenso abbiamo ricevuto i file pdf delle presentazioni, già forniti agli studenti, e che allego a questo articolo. Come vedete, il virus non ci ferma! Buona lettura.

Luigi Lombardo

Interpretazione relativistica del magnetismo

Generalmente nei testi scolastici il campo magnetico è definito a partire dagli esperimenti di Oersted, Ampere e Faraday, mentre è possibile ricavarlo dal campo elettrico applicando la relatività. Per spiegare questo ho preparato un video per i miei studenti che ho pubblicato su YouTube

Ne consiglio la visione a chi potrebbe essere interessato all’argomento. Sono graditi la segnalazione di eventuali errori o commenti.

Luigi Lombardo

La seconda B al museo della scienza e della tecnologia

giovedì 13 febbraio 2020 la seconda B del liceo Calvino di Rozzano ha visitato il Museo della scienza e della tecnologia di Milano, per svolgere attività di laboratorio interattivo sulle biotecnologie. I ragazzi, divisi in gruppi, hanno visto virare il colore di una soluzione secondo la respirazione di una pianta acquatica. Poi hanno visto virare il colore di un’altra soluzione, in cui hanno inserito del lievito di birra, secondo il tipo di nutrimento che veniva fornito al lievito. Infine hanno estratto il DNA da diverse verdure, che poi si sono portati a casa in una provetta

si prepara la soluzione per vedere la respirazione

si prepara la soluzione col lievito

si verifica il cambio del colore con l’anidride carbonica

preparazione di una soluzione

Terminato anche quest’anno il progetto GTL MIT

Anche quest’anno è terminato il progetto GTL MIT. Gli studenti Andrew Lin, Sam Solomon e Audrey Pettigrew, del MIT di Boston, hanno svolto lezioni di fisica e matematica in inglese nelle classi del triennio del liceo scientifico e del liceo scienze umane, i primi due a Rozzano e la terza a Noverasco, tra il 7 ed il 28 gennaio 2020. Il progetto si è concluso con la soddisfazione di tutti i partecipanti, studenti, professori, studenti del MIT e famiglie che hanno ospitato gli studenti del MIT. A questo proposito è utile riportare quanto mi ha scritto uno dei genitori, di due ex studenti del Calvino, in proposito: “… ritengo che l’opportunità che mi è stata offerta … sia stata eccezionale, ci permette di confrontarci con ragazzi provenienti da un diverso stato, con una diversa cultura e con una difficoltà in più derivante dalla lingua, che ha tuttavia permesso a me di rispolverare le mie scarse conoscenze della lingua inglese, a mia moglie la capacità d’accoglienza che la contraddistingue, ai miei figli di rinnovare l’inglese imparato con proficuo nell’Istituto Calvino che, spero, abbia sempre il top a livello di insegnanti.
Non ho parole per spiegarle come Sam, ed Andrew, siano integrati nelle famiglie d’appoggio, ma allo stesso tempo vorrei evidenziare come queste esperienze siano importanti sia per i nostri ragazzi che eccitanti per questi giovani che affrontano un’esperienza molto particolare ma sicuramente molto importante e diversa da ciò a cui sono abituati.
Spero che riusciate a fare in modo che le famiglie ospitanti siano molte di più di quelle poche che oggi hanno accettato questa possibilità.
Grazie mille, sono veramente contento. Buona settimana.”

Sam in aula
Nella foto i due studenti del MIT che hanno lavorato a Rozzano con alcuni dei docenti che hanno partecipato

Ringraziamo tutti per la riuscita del progetto, dagli studenti per la collaborazione, ai colleghi che hanno ceduto alcune loro ore, ai colleghi del dipartimento di matematica e fisica che hanno contribuito alla riuscita del progetto, agli studenti del MIT per l’impegno e per aver scelto il nostro Paese, al direttore ed al personale amministrativo per il loro prezioso lavoro, alla direzione per la disponibilità e l’incoraggiamento, ma soprattutto alle famiglie che hanno ospitato i tre studenti americani. Nella foto i due studenti del MIT che hanno lavorato a Rozzano con alcuni dei docenti che hanno partecipato al progetto.

esperimento di Torricelli con l’acqua

Oggi venerdì 20 settembre 2019, alle 11, la classe 2B liceo ha eseguito l’esperimento di Torricelli, utilizzando però l’acqua invece del mercurio che, come è noto, non si può utilizzare. L’esperimento è stato eseguito sulle scale di sicurezza, con un tubo di plastica trasparente alto più di 11 m. Agli estremi del tubo sono stati intestati due rubinetti, inizialmente aperti. Il rubinetto inferiore è stato immerso in un secchio d’acqua ed è stato chiuso, dopo aver fatto entrare l’acqua per evitare la presenza di bolle d’aria. Il tubo è stato riempito d’acqua dall’alto, fino a superare il rubinetto superiore, che quindi è stato chiuso. A questo punto una studentessa ha aperto il rubinetto in basso e l’acqua nel tubo è parzialmente scesa. Usando un metro a nastro (bindella), gentilmente prestatoci dalla palestra, è stata misurata l’altezza della colonna d’acqua nel tubo rispetto al livello dell’acqua nel secchio, risultata 10,03 m +- 0,01 m. Si è anche misurata la temperatura, risultata pari a 24° +- 1° C. Calcolando la pressione dovuta all’acqua, si è trovato 98,4 kPa, con l’errore valutato in base alle regole delle cifre significative. A questa pressione va sommata quella del vapore acqueo che a 24° C vale 22,4 mmHg pari a 2,99 kPa, ottenendo un totale di 101,4 kPa. Considerando che la pressione atmosferica standard è 1 atm pari a 101,3 kPa, direi che il risultato è quasi perfetto!
Luigi Lombardo

  • vista dall’alto
  • il tubo pieno d’acqua
  • l’estremo del metro a nastro è messo in corrispondenza della superficie dell’acqua nel secchio
  • l’estremo inferiore del tubo immerso nel secchio, notare il rubinetto aperto
  • si misura l’altezza della colonna d’acqua, in corrispondenza della superficie dell’acqua nel tubo
  • tubo all'interno della tromba delle scale
    il tubo all’interno della tromba delle scale
  • il metro a nastro fiancheggia il tubo
  • si sta misurando l’altezza della colonna d’acqua
  • mentre l’inizio del metro a nastro corrisponde con la superficie dell’acqua nel secchio

Esperimento di Eratostene 2019

Il liceo Calvino partecipa all’Eratosthenes Experiment 2019, come già accaduto in alcune edizioni precedenti. Il 21 marzo alle 12 e 30 gli studenti delle classi 1A e 1B del liceo hanno misurato l’angolo del Sole con la verticale, per ripetere l’esperimento di Eratostene e misurare la circonferenza della Terra, in collaborazione con altre scuole. Luigi Lombardo

Fisici, ingegneri e la costante elettrostatica.

Fisici ed ingegneri, la storia.
La fisica nasce con Galilei. Prima di Galilei venivano studiati i fenomeni naturali, ma non con il metodo galileiano, per cui non si parla di fisica, ma di filosofia naturale. I seguaci del metodo galileiano hanno costituito la categoria dei fisici. A quel tempo solo gli aristocratici o chi era protetto da un aristocratico, poteva dedicare del tempo allo studio della fisica. La gran parte della popolazione dedicava il proprio tempo alla sopravvivenza, e non aveva tempo da dedicare allo studio. Per questo la figura del fisico si è sviluppata in un ambiente aristocratico. Anche la figura dell’ingegnere è antica, ma anticamente era essenzialmente un artigiano, erede di una conoscenza tramandata da maestro ad allievo nelle botteghe artigiane. Nel Rinascimento nasce la figura dell’artista poliedrico, pittore, scultore, architetto, ingegnere e scienziato. Questi personaggi, in possesso di una cultura ad ampio raggio, vengono spesso chiamati per dirigere i lavori per le fortificazioni, ora più complessi perché debbono resistere alla nuova arma, il cannone. Anche nei tempi antichi, come oggi, l’impegno dell’ingegnere era spesso in ambito militare. Infatti l’ingegnere moderno nasce con la Rivoluzione francese. La Rivoluzione francese abolisce l’aristocrazia, creando un nuovo mondo in alternativa all’Ancien Régime. La conseguente reazione porta tutta l’Europa ad aggredire la Francia e la sua Rivoluzione. La Rivoluzione si difende tra l’altro creando l’Ecole polytechnique. In questa scuola vengono chiamati ad insegnare i migliori scienziati francesi, almeno quelli sopravvissuti alla Rivoluzione, di tutte le discipline, con lo scopo di formare gli ingegneri, che dovranno sostenere lo sforzo difensivo della Rivoluzione, risolvendo i problemi che si presentano, in particolare militari. Nasce così l’ingegnere moderno, come colui che risolve i problemi applicando le scienze. Insieme all’ingegnere nasce il sistema metrico decimale, anch’esso figlio della Rivoluzione che, pur essendo francese, vuole essere globale, e quindi vuole un sistema metrico alternativo ai sistemi locali e valido per tutti. Nel 1791 la commissione presieduta da Lagrange propone il sistema metrico decimale, precursore dell’attuale Sistema Internazionale (SI). Seguendo le alterne vicende della storia, questo sistema si diffonde in Europa. Nel 1875 la convenzione del Metro getta le basi del sistema metrico MKS (metro, kilogrammo, secondo). Questo sistema si diffonde soprattutto in ambito ingegneristico. Negli ambienti dei fisici si accetta l’idea del sistema metrico decimale come sistema globale, ma nel 1832 Gauss propone il sistema centimetro, grammo e secondo (CGS) in alternativa al MKS, perché ritenuto più adatto alla fisica, che lavora con grandezze più piccole di quelle usate dagli ingegneri. A partire dal 1880 questo sistema verrà gradualmente abbandonato a favore del MKS, sia per avere un unico sistema di unità, sia perché il mondo industriale, fortemente influenzato dalla ingegneria, pesa a favore del sistema MKS. Così, mentre nella mia giovinezza i fisici usavano ancora il sistema CGS, oggi tutti usano il Sistema Internazionale, derivato dal MKS.
La costante elettrostatica.
Il valore della costante elettrostatica (di Coulomb) è emblematico della diversa visione di fisici ed ingegneri. Infatti nel SI, che deriva dal sistema degli ingegneri, vale 1/4πε, questo perché si è scelta come unità della carica elettrica il coulomb, derivato dall’ampere, derivato dall’attrazione magnetica di due fili elettrici paralleli percorsi da corrente (legge di Ampère). In particolare il 4π al denominatore è presente per evitare che compaia nella formula del teorema di Gauss, questo perché nelle applicazioni si usa soprattutto il teorema di Gauss, e quindi si preferisce semplificare il teorema di Gauss a scapito della legge di Coulomb, dove compare la costante elettrostatica. Nel sistema CGS, quello dei fisici, la costante elettrostatica non c’è, perché i fisici, in quel sistema, avevano scelto l’unità per la carica elettrica, chiamata ovviamente unità di carica elettrostatica (esu, dall’inglese electrostatic unit), in modo da non avere la costante elettrostatica, ovvero di averla adimensionale e di valore 1. Da qui la critica dei fisici agli ingegneri, quando io ero giovane, di aver introdotto nel sistema di unità una costante fisica priva di significato fisico, cosa per loro scandalosa. Alla fine ha prevalso il sistema degli ingegneri, portando con se la scandalosa costante elettrostatica.
Luigi Lombardo

Terminato anche quest’anno il progetto GTL MIT

da destra: Paola Salina, Mariarosaria Guerra, Luke Gianni e Paolo Adajar, del MIT di Boston, Ombretta Locatelli, Luigi Lombardo
Anche quest’anno è terminato il progetto GTL MIT. Gli studenti Luke Gianni e Paolo Adajar, del MIT di Boston, hanno svolto lezioni di fisica e matematica in inglese nelle classi del triennio del liceo scientifico e del liceo scienze umane sia di Rozzano sia di Noverasco, tra il 7 ed il 25 gennaio 2019. Il progetto si è concluso con la soddisfazione di tutti i partecipanti, studenti, professori e studenti del MIT. Ringraziamo tutti per la riuscita del progetto, dalla disponibilità degli studenti, ai colleghi che hanno ceduto alcune loro ore, ai colleghi del dipartimento di matematica e fisica che hanno contribuito alla riuscita del progetto, al direttore ed al personale amministrativo per il loro prezioso lavoro, alla direzione per la disponibilità e l’incoraggiamento, ma soprattutto alle famiglie che hanno ospitato i due studenti americani. Nella foto i due studenti del MIT con gli insegnanti che hanno partecipato al progetto a Rozzano. Luigi Lombardo.

Sulla pronuncia della parola joule.

La parola joule indica l’unità di misura dell’energia nel Sistema Internazionale. Deriva dal cognome di James Prescott Joule, fisico inglese del 1800. In Italia la maggior parte delle persone lo pronuncia giaul, scritto all’italiana, [‘dᴣaul] nell’alfabeto fonetico internazionale, mentre secondo me va pronunciato giul, scritto all’italiana, [‘dᴣu:l] nell’alfabeto fonetico. Questo perché il fisico Joule pronunciava così il proprio cognome, come si evince dai dizionari inglesi, dai siti web specializzati in pronuncia e ascoltando persone di nazionalità sia britannica sia statunitense. Sarebbe accettabile la pronuncia diffusa in Italia, se fosse una italianizzazione, cioè la pronuncia di una parola straniera secondo le regole della lingua italiana, come stoccafisso per stockfish, Cartesio per Descartes, oppure mit invece di em ai ti per indicare il Massachusetts Institute of Technology, cidì invece di sidì per indicare i compact disk, e così via. Allo stesso modo trovo corretto che i francesi mi chiamino Lombardò, mentre il mio cognome in italiano è Lombàrdo, questo perché i francesi seguono le loro regole di pronuncia. Ma nel caso della pronuncia diffusa in Italia di joule, non è una italianizzazione, perché non segue le regole della pronuncia italiana. Chi pronuncia così lo fa perché è convinto di usare la corretta pronuncia inglese. [‘dᴣu:l] sembra loro francese. In effetti pare che la famiglia di Joule sia di origine belga francofona, ma al di là della origine della pronuncia di Joule, il problema è che in inglese la pronuncia è questa, e non [‘dᴣaul]. Succede lo stesso con la parola stage, che in Italia si usa al posto della parola tirocinio, e che molti pronunciano all’inglese, mentre è francese e deve essere pronunciato alla francese. Ammetto che l’uso fa la regola, e che spesso ho dovuto pronunciare secondo l’uso, anche se sbagliato, per essere capito. Ma credo che bisogna sempre essere consapevoli della corretta pronuncia, e che è bene tentare di pronunciare correttamente, almeno finché l’uso sbagliato non entri definitivamente nella lingua ufficiale. Meditate gente, meditate.
Luigi Lombardo